skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Shenwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The claw is the graph $$K_{1,3}$$, and the fork is the graph obtained from the claw $$K_{1,3}$$ by subdividing one of its edges once. In this paper, we prove a structure theorem for the class of (claw, $$C_4$$)-free graphs that are not quasi-line graphs, and a structure theorem for the class of (fork, $$C_4$$)-free graphs that uses the class of (claw, $$C_4$$)-free graphs as a basic class. Finally, we show that every (fork, $$C_4$$)-free graph $$G$$ satisfies $$\chi(G)\leqslant \lceil\frac{3\omega(G)}{2}\rceil$$ via these structure theorems with some additional work on coloring basic classes. 
    more » « less